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The effect of viscoelasticity on the turbulent
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Direct numerical simulations of statistically steady homogeneous isotropic turbulence
in viscoelastic fluids described by the FENE-P model, such as those laden with
polymers, are presented. It is shown that the strong depletion of the turbulence
dissipation reported by previous authors does not necessarily imply a depletion of
the nonlinear energy cascade. However, for large relaxation times, of the order of
the eddy turnover time, the polymers remove more energy from the large scales than
they can dissipate and transfer the excess energy back into the turbulent dissipative
scales. This is effectively a polymer-induced kinetic energy cascade which competes
with the nonlinear energy cascade of the turbulence leading to its depletion. It is also
shown that the total energy flux to the small scales from both cascade mechanisms
remains approximately the same fraction of the kinetic energy over the turnover time
as the nonlinear energy cascade flux in Newtonian turbulence.
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1. Introduction
The discovery of substantial drag reduction by adding small amounts of polymer

or surfactant additives has found many applications such as the reduction of
pumping and heat transfer losses in pipelines and district heating/cooling (Li &
Kawaguchi 2004; White & Mungal 2008). However, even in the absence of walls,
the polymer/surfactant additives were found to strongly influence the turbulence
behaviour which has broadened the range of possibilities for turbulence manipulation
in engineering applications (Benzi, Ching & de Angelis 2010; Boffetta et al. 2010;
De Lillo, Boffetta & Musacchio 2012). Even from a conceptual stand-point, the
strong effect of polymers/surfactants on turbulence may ultimately help to better
understand turbulence dynamics by studying how turbulence adapts and interacts to
the additional elastic degrees of freedom (White & Mungal 2008).

Two fundamental concepts have greatly contributed to our understanding of
turbulence–polymer interactions. First, the notion that polymers are only affected
by turbulent eddies whose time scale is smaller than the polymer relaxation time τ .
From turbulence phenomenology, these eddies ought to be smaller than a certain
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length scale rL, sometimes called Lumley scale, characterising the upper bound for
turbulence–polymer interactions (Lumley 1969, 1973). Second, the realisation that
polymer stretching (i.e. for scales smaller than the Lumley scale, rL) is a necessary
but not sufficient condition for altering the turbulence structure (because the elastic
stresses also depend on polymer concentration) which leads to the introduction of
a new length scale r? based on the balance between (i) elastic and kinetic energy
(Tabor & de Gennes 1986; de Gennes 1990), (ii) polymer and solvent stresses
(Balbovsky, Fouxon & Lebedev 2001) and/or (iii) elastic energy flux and turbulent
energy cascade flux (Xi, Bodenschatz & Xu 2013). It is customary in these theories
to consider that the polymer relaxation time is much smaller than the time scale of
the largest turbulent eddies, i.e. τ � `/

√
K (` and K are the integral length scale and

the turbulent kinetic energy, respectively) which is thought to allow the recovery of
Kolmogorov’s inertial-range statistics for r?< r� ` at high Reynolds numbers, which
are crucial to make quantitative predictions (see e.g. Tabor & de Gennes 1986; Xi
et al. 2013). In particular, the recovery of the Kolmogorov–Obukhov −5/3 power-law
kinetic energy spectrum as well as the balance between the energy cascade flux and
the total dissipation (so-called Kolmogorov’s four-fifth’s law if local isotropy is also
considered, see Frisch (1995); in viscoelastic inertial turbulence the total dissipation
would be partly due to the solvent ε[s] and partly due to the polymers ε[p]). In contrast,
for τ � `/

√
K elasticity dominates the whole flow and the polymer stress tensor

attains a universal structure (L’Vov et al. 2005; Procaccia, L’Vov & Benzi 2008).
However, it is not clear what happens in cases where the polymer relaxation time

is of the order of the eddy turnover time and there is strong interaction between
turbulence and the elastic degrees of freedom at all turbulence scales. In these cases
we cannot use neither the framework of elasticity dominated flow (τ� `/√K) nor that
of Kolmogorov turbulence with an additional dissipation mechanism (τ � `/

√
K). In

fact, to the best of the authors’ knowledge, such cases have not been addressed in the
literature in a systematic way either theoretically, experimentally or numerically. There
are, nevertheless, many studies in wall-bounded viscoelastic turbulence investigating
the effect of increasing the polymer relaxation time and achieving maximum drag
reduction. However, these offer little insight on the effect of the elastic degrees of
freedom in the nonlinear turbulence interactions (see e.g. Dimitropoulos et al. 2001;
Stone, Waleffe & Graham 2001; Min et al. 2003; Dubief et al. 2004; Terrapon
et al. 2004), apart to the consensus that there is a depletion of small scale structures
(see also de Angelis et al. 2005; Cai, Li & Zhang 2010; Perlekar, Mitra & Pandit
2010; Horiuti, Matsumoto & Fujiwara 2013; Vonlanthen & Monkewitz 2013). One
outstanding exception is the recent work by Dubief, Terrapon & Soria (2013)
which endeavours in relating maximum drag reduction in wall-bounded viscoelastic
turbulence with elasto-inertial turbulence (EIT) which is precisely characterised by
strong turbulence–polymer interactions. Understanding these interaction is crucial to
develop, e.g., physical models of the subgrid-scale stresses for large eddy simulations
(LES) of viscoelastic flows (see Thais et al. 2010, for a first attempt in developing a
LES of viscoelastic turbulence).

In the present paper we perform multiple direct numerical simulations of statistically
steady isotropic turbulence in a periodic box using the FENE-P as a model for
the rheology of the polymer solutions. This is the simplest flow configuration
possible which retains the full nonlinear dynamics of turbulence and the full
polymer–turbulence interactions without additional complicating effects such as mean
shear and proximity to boundaries. We keep all parameters constant except for two
rheological parameters of the model, namely the relaxation time, τ , and the ratio
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between the solvent and total viscosities, β. This allows us to investigate the effect
of the additional degrees of freedom provided by the elasticity of the polymers on
the kinetic energy cascade of turbulence and to quantify the progressive modifications
occurring at increasingly larger relaxation times.

2. Governing equations and methods
To represent the rheological behaviour of the polymer solutions we use the finitely

extensible nonlinear elastic (FENE) continuous model closed with the Peterlin
approximation (FENE-P, see Bird et al. 1987b). This model has been one of the main
workhorses in the study of drag reduction and other viscoelastic effects on turbulent
flows since it offers a good tradeoff between rheological fidelity and computational
demand for turbulence studies (see e.g. Jin & Collins 2007, and references therein).
Briefly, the FENE-P models the polymer dynamics as an average over an ensemble
of polymer chains, where each chain is represented by two dumbbells connected
by a nonlinear spring with a maximum set length. This reduces the rheological
parameterisation down to three parameters: the relaxation time τ of the polymer
molecules (which corresponds to the longest relaxation time of the polymer chain),
its maximum (squared) extensibility L2 (which is normalised by the square of the
equilibrium radius 〈R2〉0 of the polymer chain) and the zero-shear-rate viscosity ν[p].
The zero-shear-rate viscosity is included in the model as a non-dimensional parameter
β which is the ratio between the solvent and the total zero-shear-rate viscosity of the
solution (β ≡ ν[s]/(ν[p] + ν[s])). The dumbbells are then represented as a continuous
second-order tensor field, the so-called conformation tensor, which is defined as the
normalised second moment of the end-to-end vector of the dumbbell separation r,
Cij ≡ 〈rirj〉/〈R2〉0 (the subscript index i = 1, 2, 3 represents the three components of
the local coordinate system). In FENE-P, the conformation tensor follows a closed
evolution equation (see e.g. Bird et al. 1987b),

∂Cij

∂t
+ uk

∂Cij

∂xk
= ∂ui

∂xk
Ckj + ∂uj

∂xk
Cik − 1

τ

[
f (Ckk)Cij − δij

]
, (2.1)

where f (Ckk) ≡ (L2 − 3)/(L2 − Ckk) is the Peterlin function, ui is the velocity vector
field and δij is the identity matrix. The additional stresses caused by the polymers
are then computed from the conformation tensor as σ [p]ij = (ρν[p]/τ)[ f (Ckk)Cij − δij]
(summation over repeated indices implied; ρ is the density of the fluid). This adds an
additional term in the momentum transport equation which appears as the divergence
of the polymer stress, i.e.

∂ui

∂t
+ uk

∂ui

∂xk
=− 1

ρ

∂p
∂xi
+ ν[s] ∂Sij

∂xj
+ 1
ρ

∂σ
[p]
ij

∂xj
, (2.2)

where p is the pressure and Sij= (∂ui/∂xj+ ∂uj/∂xi)/2 is the strain rate tensor. These
modified incompressible Navier–Stokes equations are integrated in a triple periodic
domain with N collocation points using a pseudo-spectral method (de-aliased with the
2/3 rule) and a third-order Runge–Kutta scheme in time (see e.g. da Silva & Pereira
2008). The transport equation for the conformation tensor is solved using the central
differences algorithm proposed by Vaithianathan et al. (2006) based on the Kurganov–
Tadmor method, which guarantees that the conformation tensor remains symmetric
and positive-definite and avoids the need to add artificial diffusion in (2.1). The



42 P. C. Valente, C. B. da Silva and F. T. Pinho

N ν[s] (m2 s−1) Reλ (—) K (m2 s−2) ε[s] (m2 s−3) ` (m) λ (m) kmaxη (—)

1923 0.010 17 0.11 0.03 0.64 0.631 4.9
1923 0.010 36 0.98 0.49 0.55 0.445 2.4
1923 0.010 46 2.17 1.47 0.52 0.384 1.8
1923 0.008 61 3.80 3.26 0.50 0.305 1.3
5123 0.008 85 7.19 5.53 0.64 0.323 2.9
5123 0.008 113 38.41 95.75 0.46 0.179 1.5
10243 0.004 177 39.45 95.53 0.47 0.120 1.7

TABLE 1. Compilation of the Newtonian DNS results (see the text for definitions). We use
SI units for the presented quantities. The box size of the simulations is Lbox = 2π (m).

implementation of the numerical algorithm has been verified in a Couette flow where
the FENE-P model has an analytical solution (see Mósca 2012). We also benchmarked
our code against the statistically stationary homogeneous isotropic DNS data of de
Angelis et al. (2005). For this purpose we implemented their forcing routine (which
differs from the forcing strategies outlined below) and ran the three test cases
presented in their table 1 requiring N = 963 collocation points (643 effective modes).
Our code quantitatively reproduces their numerical values within ±5 %. Note, however,
that the numerical algorithm used in de Angelis et al. (2005) requires an additional
diffusion term in (2.1) to ensure positive-definiteness of the conformation tensor and
therefore mild differences between the results of the two codes may be expected.

In the present simulations, the turbulence is sustained by an artificial forcing
delta-correlated in time and uncorrelated with the velocity field (Alvelius 1999).
This forcing scheme has the advantage of prescribing a priori the power input
spectrum f (k) and thus the total power input P and to indirectly influence the integral
scale `. We force the first four wavenumbers with a Gaussian profile centred at
wavenumber 3 and distributed over the neighbouring wavenumbers 2 and 4 so that
there is negligible power input in the first wavenumber and the ratio between the
box size and the integral scale ranges between 9 and 14. A set of simulations with
β = 0.8 and τ = 0.4 s (to compare with run 5 in table 2) were carried out with
other forcing parameters, namely (i) concentrated power input at wavenumber 3 and
(ii) power input at wavenumbers 1 and 2 in order to ensure that our results did not
meaningfully change, particularly concerning the behaviour of the polymer stresses
and the spectrum of kinetic energy to elastic energy transfer. We also performed a
set of simulations (runs 29 and 30 in table 2) with the ‘acceleration’ forcing used
in Lamorgese, Caughey & Pope (2005) applied to wavenumbers 2, 3 and 4, which
also allows us to predetermine the power input. This forcing strategy is similar to the
linear forcing suggested by Lundgren (2003) when the latter is applied to selected
wavenumbers.

The turbulent kinetic energy K, the Newtonian solvent dissipation ε[s] (the polymer
dissipation is treated separately) and the integral scale ` are extracted from
the spherical-shell averaged kinetic energy spectrum E(k) in the usual way, i.e.
K = ∫ kmax

kmin
E(k)dk, ε[s]= 2ν[s]

∫ kmax

kmin
k2E(k)dk and `=π/(2K)

∫ kmax

kmin
E(k)k−1dk, respectively

(Monin & Yaglom 1975, kmin = 1 and kmax = 3
√

N/3 are, respectively, the lowest
and largest wavenumbers resolved in the simulations). These quantities are used to
define the Taylor microscale λ ≡ √10ν[s]K/ε[s], the Kolmogorov length scale η ≡
(ν[s]3/ε[s])1/4, the eddy turnover time `/

√
K, the Kolmogorov time scale τη≡

√
ν[s]/ε[s]
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No. N β Wi0 Wi De Reλ K ε[s] ε[p] ` λ kmaxη rL Cii/L2

(—) (—) (—) (—) (—) (m2 s−2) (m2 s−3) (m2 s−3) (m) (m) (—) (m) (%)

1 1923 0.80 0.5 0.5 0.10 68 3.85 2.67 0.62 0.52 0.34 1.3 0.01 0.0
2 1923 0.80 1.0 0.9 0.19 67 3.78 2.66 0.63 0.51 0.34 1.3 0.01 0.0
3 1923 0.80 2.0 1.6 0.35 71 3.64 2.16 1.11 0.54 0.37 1.4 0.19 0.1
4 1923 0.80 4.1 2.3 0.56 82 2.88 1.02 2.25 0.61 0.47 1.7 0.63 1.0
5 1923 0.80 6.1 2.7 0.71 79 2.20 0.65 2.70 0.63 0.52 1.9 1.00 2.3
6 1923 0.80 8.1 3.3 0.84 72 1.82 0.54 2.74 0.64 0.52 2.0 1.29 3.9
7 1923 0.80 10.2 4.0 0.99 63 1.58 0.52 2.79 0.63 0.49 2.0 1.53 5.8
8 1923 0.80 12.2 5.1 1.17 59 1.57 0.58 2.70 0.64 0.46 2.0 1.83 7.6
9 1923 0.80 12.2 5.3 1.20 54 1.48 0.63 2.67 0.61 0.43 1.9 1.78 0.1

10 1923 0.80 16.2 7.5 1.63 51 1.48 0.70 2.56 0.60 0.41 1.9 2.38 11.5
11 1923 0.80 20.3 10.2 2.14 47 1.49 0.84 2.46 0.57 0.38 1.8 2.99 15.0
12 1923 0.90 0.5 0.5 0.10 62 3.73 2.98 0.29 0.48 0.32 1.3 0.01 0.0
13 1923 0.90 1.0 1.0 0.20 64 3.83 2.95 0.32 0.50 0.32 1.3 0.01 0.0
14 1923 0.90 2.0 1.7 0.36 70 3.72 2.34 0.95 0.53 0.36 1.4 0.21 0.2
15 1923 0.90 4.1 2.3 0.59 83 3.01 1.09 2.21 0.58 0.47 1.7 0.68 2.0
16 1923 0.90 6.1 2.8 0.74 79 2.27 0.68 2.64 0.61 0.52 1.9 1.03 4.6
17 1923 0.90 8.1 3.3 0.85 73 1.85 0.54 2.76 0.64 0.52 2.0 1.30 7.5
18 1923 0.90 12.2 4.9 1.19 61 1.55 0.54 2.78 0.63 0.48 2.0 1.83 13.9
19 1923 0.90 16.2 7.0 1.57 54 1.46 0.61 2.68 0.62 0.44 1.9 2.37 19.6
20 1923 0.90 20.3 9.3 1.98 50 1.45 0.68 2.61 0.61 0.41 1.9 2.95 24.6
21 1923 0.95 0.5 0.5 0.10 63 3.86 3.13 0.14 0.50 0.31 1.3 0.01 0.0
22 1923 0.95 1.0 1.0 0.20 62 3.79 3.10 0.17 0.50 0.31 1.3 0.01 0.0
23 1923 0.95 2.0 1.8 0.38 68 3.71 2.47 0.83 0.51 0.35 1.4 0.22 0.4
24 1923 0.95 4.1 2.4 0.62 79 3.00 1.20 2.20 0.56 0.45 1.6 0.70 3.8
25 1923 0.95 6.1 2.9 0.76 83 2.48 0.75 2.51 0.63 0.51 1.8 1.08 8.1
26 1923 0.95 8.1 3.4 0.90 77 2.06 0.59 2.67 0.64 0.53 2.0 1.38 12.8
27 1923 0.95 12.2 4.8 1.21 67 1.65 0.50 2.81 0.63 0.51 2.0 1.88 21.6
28 1923 0.95 16.2 6.4 1.55 61 1.52 0.52 2.75 0.64 0.49 2.0 2.42 29.4
29 3843 0.80 6.6 2.9 0.62 183 3.04 0.61 2.73 0.56 0.39 1.9 0.70 2.7
30 3843 0.80 13.3 4.1 0.91 160 1.92 0.32 2.89 0.61 0.43 2.2 1.34 7.6
31 3843 0.80 26.5 10.5 1.71 98 1.50 0.52 2.87 0.57 0.29 1.9 2.40 13.1
32 1923 0.80 12.2 4.3 0.94 107 2.35 0.41 2.89 0.98 0.68 2.1 2.18 8.2
33 1923 0.80 20.3 6.9 1.35 86 1.84 0.38 2.90 1.01 0.62 2.2 3.34 15.8

TABLE 2. Compilation of the viscoelastic DNS results. We use SI units for the presented
quantities (see also table 1). Note that Wi0 is the polymer relaxation time normalised by
the Kolmogorov time scale, τη, taken from the reference Newtonian simulation, whereas
in the definition of Wi the normalising τη is taken from the corresponding viscoelastic
simulation. For the N= 1923 simulations the solvent viscosity is set to ν[s]= 0.008 m2 s−1,
whereas for the N=3843 simulations the solvent viscosity is ν[s]=0.003 m2 s−1. For all of
the simulations the power input is P= 3.3 m2 s−3 and L2= 1002 (the only exceptions are
datasets 9 and 31 where L2= 10002 and L2= 1502, respectively). The random forcing delta
correlated in time is used for all simulations except runs 32 and 33 where an ‘acceleration’
forcing is used instead (see § 2).

and the Taylor microscale-based Reynolds number, Reλ ≡ √(2/3)Kλ/ν[s]. Since the
turbulence is statistically homogeneous and stationary, the kinetic energy transferred
to polymer elastic energy is given by the work of polymer stress against the strain
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rate, σ [p]ij Sij, which is eventually dissipated into heat due to the Stokes frictional drag
acting on the polymers, or rather on the dumbbell beads in the FENE model. For the
FENE-P model the dumbbell dissipation can be computed as ε[p] = f (Cjj)σ

[p]
ii /(2τ)

(see e.g. Dallas, Vassilicos & Hewitt 2010). Since our simulations are statistically
stationary the kinetic to elastic energy transfer rate balances on average the elastic
energy dissipated by the polymers, i.e. ε[p] = σ [p]ij Sij where the overline represents
averages in time. We also define a Weissenberg, Wi ≡ τ/τη, and a Deborah number,
De≡ τ√K/`, i.e. the ratio between the relaxation time and the Kolmogorov and eddy
turnover time scales, respectively.

Finally, for reference, we compute Lumley’s length scale (Lumley 1969)
characterising the scales where the local eddy turnover time matches the relaxation
time of the polymer (i.e. the local Deborah is unity). We do so by computing
the kinetic energy structure function averaged over spherical shells (δui)2(r) ≡
(ui(x+ r)− ui(x))2 from the spectrum E(k), since it can be shown that (Monin
& Yaglom 1975),

(δui)2(r)= 4
∫ ∞

0

(
1− sin kr

kr

)
E(k)dk. (2.3)

(Since we have a periodic domain we effectively compute 4
∑N

j=1(1− (sin(kjri))/(kjri))

E(kj).) From the structure function we compute a local eddy turnover time
r/
√
(3/2)(δui)2(r) and use it to compute rL by inverting the relation rL/

√
(3/2)(δui)2(rL)

= τ . Note that the factor
√

2/3 is added to ensure that η/
√
(3/2)(δui)2(η) =√

ν[s]/ε[s] = τη, i.e. for r = η the estimate is compatible with the Kolmogorov time
scale (recall that limr→0 (δui)2 = 2ε[s]/(3ν[s])r2).

3. Turbulence in Newtonian fluids at moderate Reynolds numbers

The direct numerical simulations of turbulence in FENE-P fluids are typically one
order of magnitude computationally more expensive than their Newtonian counterparts
(see e.g. de Angelis et al. 2005; Dallas et al. 2010) and, consequently, the domain
size and currently achievable Reynolds numbers in viscoelastic simulations are
moderate. Therefore, we performed first a set of Newtonian DNSs spanning Reynolds
numbers from 17 to 177 (see table 1 and caption of figure 1) to study the effect of
the Reynolds number on the nonlinear turbulent energy cascade. This will also serve
the purpose of reviewing the key aspects of turbulence dynamics in order to better
understand the impact of polymer additives.

The starting point of our analysis is the scale-by-scale power budget in wavenumber
space which is the wavenumber space counterpart of the von Kármán–Howarth–Monin
equation in physical space (Monin & Yaglom 1975). For statistically stationary
homogenous turbulence it reads,

f (k)=−T(k)+ 2ν[s]k2E(k), (3.1)

where k is the wavenumber, E(k) is the three-dimensional kinetic energy spectrum,
T(k) is the nonlinear energy transfer spectrum and f (k) is the artificial imposed forcing
which provides the power input that balances the dissipation. All of the terms in (3.1)
are averaged over spherical shells of radius k=|k| (thus they include information from
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FIGURE 1. Results from the DNSs of statistically steady homogenous isotropic Newtonian
turbulence with (D|t) Reλ = 17 (I|H) Reλ = 36, (E|u) Reλ = 46, (A|q) Reλ = 54,
(♦|f) Reλ = 86, (@|p) Reλ = 113, (C|s) Reλ = 177. (a) Spectra of (dashed line)
F(k), (empty symbols) Π(k) and (filled symbols) D(k). The thick dashed-dotted line
follows (3.3) with CK = 1.5. (b) Spectra of the normalised kinetic energy cascade
flux,

(
3
2

)5/2
Π`/K3/2 versus the wavenumber normalised with the Taylor microscale, kλ.

In the inset we compile the maximum normalised kinetic energy cascade flux, CΠ ≡
max

[(
3
2

)5/2
Π`/K3/2

]
(in open circles) and the normalised energy dissipation Cε[s] ≡(

3
2

)5/2
ε[s]`/K3/2 (in filled circles) and plot them against Reλ. The numerical factor

(
3
2

)5/2

allows for a direct comparison with experimentally measured surrogates.
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the whole computational domain) and averaged in time over about 2–3 eddy turnovers
after letting the simulation run for 8–10 eddy turnovers to ensure a fully developed
and statistically steady state. The indefinite integral of (3.1) yields

F(k)=Π(k)+D(k), (3.2)

where F(k) ≡ ∫ k
0 f (k∗)dk∗ is the power input up to wavenumber k, Π(k) ≡

−∫ k
0 T(k∗)dk∗ is the net nonlinear energy cascade flux from wavenumbers k∗ 6 k

to larger wavenumbers and D(k) ≡ ∫ k
0 2ν[s]k∗2E(k∗)dk∗ is the total kinetic energy

dissipated up to wavenumber k. Clearly, by definition F(k= kmax)=P, Π(k= kmax)= 0
and D(k= kmax)= ε[s]. Since the turbulence is statistically stationary all of the power
input is, on average, dissipated into heat, P= ε[s]. The three terms of (3.2) are shown
in figure 1(a) for various DNS with different levels of Reλ (see table 1). The ordinate
is normalised by the dissipation (here there is no contribution from the polymers
and all of the dissipation is due to the solvent) and the abscissa is normalised by
the Kolmogorov microscale η so that the increase in Reynolds number is evidenced
by the offset to the left of the low-wavenumber part of the spectra. This is most
clearly visible for the spectra of external power input and nonlinear energy transfer
(cf. figure 1a).

Note that in DNS, depending on the forcing strategy, f (k) is usually prescribed
a priori therefore the above equation relates directly Π(k) with E(k). For example,
for statistically stationary Newtonian turbulence (where P = ε[s]) assuming a
Kolmogorov–Obukhov inertial range spectrum, E(k) = CKε

[s]2/3k−5/3, leads to an
energy flux spectrum following (Ishihara, Gotoh & Kaneda 2009),

Π(k)' P
(

1− 3CK

2
(kη)4/3

)
, k> k+, (3.3)

where k lies within the inertial range and k+ is the highest wavenumber up to
which the forcing is applied so that P≡ ∫∞0 f (k∗)dk∗ = ∫ k+

0 f (k∗)dk∗. (The relation is
not exact because for low wavenumbers the dissipation spectrum no longer follows
the same functional form as in the inertial range. Nevertheless, the induced error is
asymptotically zero for high Reynolds numbers within Kolmogorov’s phenomenology.)
The functional form (3.3) of the cascade flux within the inertial range agrees well
with our highest Reynolds number data, see figure 1(a).

Clearly, for statistically stationary turbulence, as Re→∞ the inertial range flux
becomes approximately constant and equal to the dissipation, i.e. Π(k) ' ε[s]. This
is the wavenumber space counterpart of the generalised Kolmogorov’s four-fifths law
using spherical shell averages rather than kinematic relations based on local isotropy
(see Nie & Tanveer 1999). However, from (3.3) we infer that Π(k) will actually
never be exactly constant over a range of wavenumbers since it follows a power-law
roll-off. This motivates the characterisation of the inertial range flux by its maximum
value Π |max ≡ max(Π) which will, nevertheless, become asymptotically equal to the
dissipation. At moderate Reynolds numbers Π |max/ε

[s] departs from unity which is
sometimes referred to as finite Reynolds number (FRN) effects (Qian 1999; Antonia
& Burattini 2006; Tchoufag, Sagaut & Cambon 2012).

Although the ratio Π |max/ε
[s] may have significant departures from unity at moderate

and low Reynolds numbers, it has been observed by McComb et al. (2010) that the
high-Reynolds-number scaling for the flux Π |max holds for low Reynolds numbers as
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well, i.e. that it remains proportional to the kinetic energy times the eddy turnover
rate, Π |max ∼ K3/2/`. We test this observation against our data and confirm that it
is, indeed, a very good approximation (see figure 1b). In particular, we plot in the
inset of figure 1(b) the non-dimensional group CΠ ≡

(
3
2

)5/2
Π |max`/K3/2 against Reλ

and observe that even below Reλ≈ 50 there is only a mild increase on the numerical
value of CΠ in stark contrast to the dissipation normalised in the same way. Note that
we have added the numerical factor

(
3
2

)5/2 in order to compare our numerical values
of CΠ and Cε with experimentally measured surrogates. On the basis of isotropy,√

2K/3 = u′ and ` = 2L(1)11 /3, where u′ and L(1)11 are the root-mean-square (r.m.s.)
and longitudinal integral length of the velocity fluctuations, typically measured
with single hot-wire anemometers. We also confirm that beyond Reλ ' 100 the
normalised dissipation Cε[s] becomes approximately constant and independent on the
fluid viscosity. The numerical value of Cε[s] ≈ 0.5 is consistent with the values found
in the literature for stationary homogenous turbulence (Burattini, Lavoie & Antonia
2005).

We use the fact that the scaling reflected in the dimensionless parameter CΠ holds
for low Reynolds numbers as a starting point to analyse the energy cascade in our
viscoelastic turbulence simulations where the Reynolds numbers are moderate at best.

4. Global statistics for the viscoelastic simulations
The numerical code described in § 2 is used to perform various simulations with

different rheological parameters ranging τ = 0.025–1.0 s, β = [0.8, 0.9, 0.95] and
L2 = 1002 for all except two simulations. The range of relaxation times matches
roughly that used in the experimental study of the MPI Göttingen group (Ouellette, Xu
& Bodenschatz 2009; Xi et al. 2013) using polyacrylamide in weight concentrations
up to 20 p.p.m. (equivalent to β > 0.9; L2 = 1502 for polyacrylamide which is
of the same order as that used in our simulations, L2 = 1002). We also perform
simulations with β = 0.8 which would correspond to the previously mentioned
experiments with a polymer mass fraction of approximately 45 p.p.m. (To estimate
the corresponding concentration we compute the ‘β concentration’, cβ = (1 − β)/β,
which can be estimated as cβ = (ckBTτ)/(ν[s]Mp) (Jin 2007), where c, kB, T, Mp are
the polymer mass fraction, Boltzmann’s constant, the temperature of the solution
and mass of a single polymer molecule, respectively.) Polymers solutions with
these concentrations can still be considered dilute, since the overlap concentration
(an estimate characterising the onset of polymer chain overlap) for polyacrylamide
solutions in water is c? ≈ 200 p.p.m., see e.g. Liu, Jun & Steinberg (2009).

Most of the simulations are performed with N = 1923 collocation points and
the straddled Reλ is small (see table 2). In addition we perform simulations with
N = 3843 and a larger Reλ for β = 0.8 and τ = [0.2, 0.4, 0.8] in order to infer
on the qualitative effect of the Reynolds number (datasets 29–31 in table 2; in
dataset 31 we set L2 = 1502 to avoid excessive polymer extension relative to L2 and
thus numerical instabilities). We also perform an additional simulation with β = 0.8
and τ = 0.6, but L2 = 10002, in order to assess the effect of finite extensibility of
the polymers (dataset 9 in table 2). Finally we perform two additional simulations
using the ‘acceleration’ forcing of Lamorgese et al. (2005) (see § 2) with β = 0.8
and τ = [0.6, 1.0], in order to assess the influence of the forcing on our results
(datasets 32 and 33 in table 2). Note that the resolution of our simulations varies
between kmaxη = 1.3–2.2 (see table 2), which previous works have reported to be
sufficient (Perlekar et al. 2010; Robert et al. 2010). Nevertheless, we performed a
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simulation with the input parameters of dataset 6 using N = 3843 collocation points
(thus kmaxη= 4.0) and confirmed that the differences in the statistics considered here
are negligibly small.

4.1. Polymer and solvent dissipation
We start by characterising the fraction of the power input dissipated by the solvent
and by the polymers for the various τ (normalised as De or Wi) and β. As expected,
for Wi/ 1 (De/ 0.2 in our simulations, see table 2 and figure 2a) the fraction of the
power input dissipated by the solvent is approximately equal to the numerical value
of the parameter β since elasticity plays a weak role and a Newtonian behaviour is
recovered with total viscosity ν[s]+ ν[p]= ν[s]/β (Bird, Armstrong & Hassager 1987a;
Bird et al. 1987b). For increasing De (noting that Wi ' 1 such that the polymers are
stretched by the flow) we observe that the polymers dissipate an increasingly larger
fraction of the power input leading to a depletion of the solvent dissipation and
thus of fine-scale structures (figure 2a). This is in line to what has been previously
reported in the literature (de Angelis et al. 2005; Perlekar, Mitra & Pandit 2006;
Liberzon et al. 2009; Ouellette et al. 2009; Cai et al. 2010; Perlekar et al. 2010;
Horiuti et al. 2013; Xi et al. 2013). Concomitantly, the fraction of power dissipated
by the polymers, ε[p]/P, increases substantially and can be as high as 90 % of the total
power input as can be seen in our N = 3843 simulation with Reλ ≈ 160, De ≈ 0.9
and β = 0.8 (dataset 30 in table 2, see also figure 2a). Although large values of
ε[p]/P have been reported in the literature they typically do not exceed ε[p]/P≈ 70 %
(see the data compilation by Liberzon et al. 2009). The larger values yielded by
some of our simulations are likely due to the fact that our simulations span values
of the Deborah number (i.e. the ratio between τ and the turnover time) that are
also larger than those straddled previously. Note that both types of external forcing
produce a similar fraction of power dissipated by the polymers (see figure 2a). For
large polymer relaxation times (De ' 1) there is a decrease in the fraction of the
power dissipated by the polymers. This is likely a consequence of the fact that the
average polymer dissipation (ε[p] ≡ (1/V) ∫V f (Cii)σ

[p]
ii /(2τ)dV in the FENE-P model,

where V = (2π)3 is the volume of the computational box) is directly proportional
to the average trace of the polymer stress, σ [p]ii , and inversely proportional to the
relaxation time, τ . In other words, for increasingly large De, the increase in polymer
stress due to larger polymer elongations (Cii) does not compensate for the effect of
the increased relaxation time in reducing the polymer dissipation. In wall-bounded
turbulence, Dallas et al. (2010) also showed that the total polymer dissipation grows
with the polymer relaxation time up to a point where it starts to decrease. The
former regime is characterised by low drag reduction, whereas the latter by high (or
maximum) drag reduction.

Perhaps surprisingly, however, there is only a mild dependence of the fraction
of polymer dissipation on the polymer viscosity parameter, β. This implies that
increasing β, which corresponds to a decrease in the polymer zero-shear-rate viscosity,
turns out to be concomitant with an increase in the mean square dumbbell separation
Cii (cf. table 2) so that the kinetic energy to elastic energy transfer rate (and, thus,
polymer dissipation) only mildly changes (figure 2a). This appears to be consistent
with the argument presented by Balbovsky et al. (2001) whereby the characteristic
elongation of the molecules is such that the polymer stresses are of the order of the
viscous stresses (because beyond this point they modify the surrounding flow and
diminish stretching). Recall that the polymer stresses are proportional to the elongation
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FIGURE 2. Global statistics from the DNSs of statistically steady homogenous isotropic
viscoelastic turbulence versus the Deborah number. Datasets 1–28, excluding dataset 9
(N = 1923 with the delta-correlated forcing and L2 = 1002, see table 2) for the different
solvent to total viscosity ratios are plotted with (u|E) β = 0.8, (p|@) β = 0.9, (A|q) β =
0.95. Datasets 29–31 with higher Reynolds number (see table 2) are plotted with ( | ).
Datasets 32 and 33 with the ‘acceleration’ forcing are plotted with (H|I). In (a) the open
symbols show the percentage of the solvent dissipation over the total power input, ε[s]/P
and the filled symbols show the percentage of the polymer dissipation over the total power
input, ε[p]/P. In (b) the open symbols show the normalised energy dissipation, Cε[s] and
the filled symbols show the power input normalised in the same way, CP.



50 P. C. Valente, C. B. da Silva and F. T. Pinho

and the zero-shear-rate viscosity (which in turn is related to the concentration of the
polymers). In figure 2(a) we also present the data from the higher-Reynolds-number
simulations which are qualitatively similar, albeit the fraction of total power dissipated
by the polymers is slightly larger.

Since the polymers add a source of dissipation which also leads to changes
in the kinetic energy of the flow and the integral scale (see table 2), it is not
straightforward to compare Newtonian and viscoelastic dissipation routes without
appropriately normalising the quantities. Therefore, we normalise the power input and
dissipation by the solvent with the kinetic energy, K and eddy turnover time `/

√
K

as it is customary for Newtonian turbulence (see § 3) and form the non-dimensional
groups CP ≡

(
3
2

)5/2
P`/K3/2 and Cε[s] ≡

(
3
2

)5/2
ε[s]`/K3/2. Note that, in some sense,

CP (= Cε[s] in statistically steady Newtonian turbulence) measures the efficiency of
turbulence in dissipating the power input for a given large-scale flow. In figure 2(b)
we plot Cε[s] as a function of De for the three different values of the parameter β.
We observe that up to De≈ 0.7 the normalised solvent dissipation Cε[s] decreases to
half of its numerical value in the Newtonian reference case which may be interpreted
as a decrease in the efficiency of the turbulence to dissipate energy through the
solvent. For larger De, however, Cε[s] increases and, for the largest De and lowest β
it exceeds the numerical value of the Newtonian reference. If we, instead, consider
the normalised power input CP we observe that for large De its numerical value can
be as high as five times the one typically found in Newtonian turbulence. Recall
that we keep the total power input constant for all simulations (which is the sum
of the solvent plus polymer dissipation due to stationarity) and therefore the large
increase in CP is mainly due to a substantial decrease in the kinetic energy K and
a mild increase in the integral scale ` (see table 2). Once more, the trend for the
higher-Reynolds-number simulations is qualitatively the same even though Cε[s] and
CP have smaller numerical values (see figure 2b).

4.2. Scale-by-scale kinetic energy transfer balance
Similarly to the approach taken for the analysis of Newtonian fluid turbulence we
write the scale-by-scale power balance equation modified to include the wavenumber
breakdown of the net kinetic energy transferred to/from the polymer elastic energy
which we denote as T [p](k) (see e.g. Brasseur et al. 2005; Casciola & de Angelis
2007). In essence it is the spectral decomposition of the work produced from the
interaction of the polymer stresses with the strain rate. The equation reads

f (k)=−T(k)+ T [p](k)+ 2ν[s]k2E(k). (4.1)

Note that the integral of T [p](k) is the total energy transferred to/from the polymer
which in statistically stationary turbulence is equal to the elastic energy dissipated by
the polymers and therefore a strictly positive quantity, i.e.

∫∞
0 T [p](k)dk> 0. However,

T [p](k) can be positive or negative at different wavenumbers representing a transfer
of kinetic to elastic energy or from elastic to kinetic energy, respectively. Thus,
T [p](k) can be thought of as distributed kinetic energy sources/sinks at the different
wavenumbers but whose net effect over all scales is to remove kinetic energy from
the solvent reflecting the dissipative nature of the polymers as they stretch and recoil.

We plot the indefinite integral of (4.1),

F(k)=Π(k)+Π [p](k)+D(k) (4.2)
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FIGURE 3. Spectral energy transfer budget, (4.2), for the DNSs of statistically steady
homogenous isotropic viscoelastic turbulence for β = 0.8 and (a) De= 0.1 (Wi= 0.5), (b)
De= 0.71 (Wi= 2.7), (c) De= 1.17 (Wi= 5.1) and (d) De= 2.14 (Wi= 10.2). Legend: (u)
F(k)/P; (@) Π(k)/P; (E) Π [p](k)/P; (t) D(k)/P. The vertical thick dashed line represents
the wavenumber corresponding to the Lumley scale, rL added for reference. In (d) the
polymer-induced energy cascade ζ is depicted.

for four different De in figure 3. The new term, Π [p](k) ≡ ∫ k
0 T [p](k∗)dk∗ represents

the total kinetic to elastic energy transfer up to wavenumber k and, as expected,
shows a strong dependence on the polymer relaxation time. For Wi/O(1) (De/ 0.2)
we confirmed that Π [p](k) becomes proportional to the solvent’s dissipation spectrum,
i.e. Π [p](k) ≈ (1/β − 1)D(k) indicating that the polymer solution behaves as a
Newtonian fluid with total viscosity ν[s] + ν[p] (figure 3a; see also figure 2a). For
higher Wi (and De), however, the kinetic to elastic energy transfer Π [p](k) becomes
the dominant kinetic energy loss mechanism and we can observe that for cases with
De > 0.7 it also overcomes the power exchanges via the nonlinear energy cascade
for all wavenumbers (cf. figure 3b–d). In fact, for the cases with De = [1.17, 2.14]
almost all of the external power input goes directly to the polymers (figure 3c,d).

As a consequence, the maximum nonlinear energy cascade flux, Π |max is a
monotonically decreasing fraction of the power input for increasing De and for all
β (see figure 4). However, since the solvent dissipation also decreases we compare
the ratio between the two in figure 4. Note that, to negotiate the confounding effect
of having non-zero dissipation at large scales due to FRN (see § 3) we consider only
the solvent dissipation for wavenumbers larger than the wavenumber k? of maximum
nonlinear energy transfer (such that Π(k?) ≡ Π |max), i.e. ε′[s] ≡ 2ν[s]

∫∞
k? k2E(k)dk. It
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FIGURE 4. (Colour online) Ratio between the maximum energy cascade flux and the
power input, Π |max/P, or the small-scale solvent dissipation, Π |max/ε

′[s] versus the Deborah
number for all DNS data (see the text for the definition of ε′[s] and note that the ordinates
are logarithmically spaced). Legend: β = 0.8, β = 0.9, β = 0.95 and β = 0.8 (N = 3843)
represent datasets 1–11 (excluding dataset 9), 12–20, 21–28 and 29–31, respectively.

turns out that the cascade flux exceeds the solvent dissipation, i.e. Π |max/ε
′[s] > 1,

for De / 1.0. This highlights the fact that the energy being transferred from low to
high wavenumbers goes both to the solvent, which is then dissipated by the fine
turbulence eddies, and to the polymer chains, which also dissipate it as the polymers
stretch and recoil. Contrastingly, for De ' 1.0 the energy cascade flux becomes
smaller than the solvent dissipation, i.e. Π |max/ε

′[s] < 1, and thus there must be an
additional energy transfer route that accounts for the difference. It turns out that
this energy cascade route is provided by the polymers via the term Π [p](k). As can
be seen in figure 3(c,d), Π [p](k) has a maximum at some intermediate wavenumber
and decreases up to the highest wavenumber, indicating a sign change in the kinetic
energy to elastic energy transfer spectrum T [p](k). This implies that the polymers
extract more kinetic energy from the large scales than they can dissipate and return
the difference to the large wavenumbers, i.e. the fine scales. To the best of the authors’
knowledge, this is the first data clearly showing a polymer-induced kinetic energy
cascade owing to the net transfer of elastic to kinetic energy at large wavenumbers.
Note, however, that a careful examination of figure 6 in Brasseur et al. (2005) and
figure 22 in Watanabe & Gotoh (2013) also indicate the onset of a high-wavenumber
elastic-to-kinetic energy transfer. We define a parameter ζ ≡max(Π [p](k))−Π [p](∞)
(effectively, due to discretisation we compute ζ = max(Π [p](k)) − Π [p](kmax)) which
quantifies the total cascade flux induced by the polymers (see figure 3d for a graphical
representation of ζ ). This parameter is useful to characterise the scaling of the total
energy transferred from large to small scales.

This polymer-induced energy cascade is also manifested in our larger-Reynolds-
number simulations (see figure 5a). Although, the Reynolds numbers spanned by our
simulations are insufficient to infer on the behaviour of viscoelastic inertial turbulence
at high Reynolds numbers, our DNS nevertheless show that the polymer-induced
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FIGURE 5. (a) Effect of Reynolds number on the spectral transfer budget from the
comparison between two datasets (6 and 30 in table 2) with the same β = 0.8 and
τ = 0.4 s (and, thus, similar Deborah De= 0.84 and De= 0.91, respectively) but different
ν[s] such that Reλ = 72 and Reλ = 160, respectively. (b) Effect of maximum polymer
extensibility on the spectral transfer budget from the comparison between two datasets
(8 and 9 in table 2) with the same β = 0.8 and τ = 0.6 s (and, thus, similar Deborah
De≈ 1.2) but different L2 such that Cii/L2 = 7.6 [%] and Cii/L2 = 0.1 [%], respectively.
Legend: (H| ) F(k)/P; (p| ) Π(k)/P; (u| ) Π [p](k)/P; (t| ) D(k)/P. Open circles
have been overlaid in the datasets with larger Reλ and L2 (datasets 30 and 9, respectively).

energy cascade ζ and the large fraction of energy dissipation by the polymers occur
at moderate Reynolds numbers.

We also note that the physical mechanism behind the polymer-induced energy
cascade ζ , is not due to the nonlinear finite extensibility springs of the FENE-P
model. This is inferred by comparing the results of the DNS with De= 1.2, β = 0.8
and L2= 1002 (dataset 8 in table 2) with a second DNS where the maximum squared
extensibility is increased to L2 = 10002 (dataset 9 in table 2) so that the Peterlin
function is always very close to unity (even instantaneously for any point in the
domain) and the FENE-P chains effectively behave as linear springs just like in
the Oldroyd-B model. The wavenumber power balance (4.2) for the two DNSs is
compared in figure 5(b) where it can be seen that there are very small quantitative
differences and the overall behaviour is very similar. Finally, we show the results
for the two DNSs with the ‘acceleration’ forcing to show that the polymer-induced
energy cascade is not particular to the delta-correlated forcing (see figure 6).

So far we have shown that the polymers induce severe changes in the turbulent
energy cascade as well as inducing a kinetic energy cascade of their own for
large De. However, as we saw for the Newtonian simulations, the scaling of the
nonlinear energy cascade flux with large-scale quantities K and ` is quite robust
and was only weakly dependent on the Reynolds number leading to CΠ ≈ const.
(see the inset to figure 1b). We now test the same scaling for the viscoelastic
simulations as a function of the rheological parameters (see figure 7a). Indeed, up
to De ≈ 0.7 the numerical value of CΠ is very close to the Newtonian reference,
CΠ ≈ 0.5, even though for De ≈ 0.7 the polymers already dissipate more than
80 % of the power input (see figure 2a and table 2). For larger De the numerical
value of CΠ decreases, which corresponds to the onset of the kinetic energy
cascade due to the polymers (for convenience we form the dimensionless parameter
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FIGURE 6. Spectral transfer budget for the DNSs with the ‘acceleration’ forcing at two
Deborah numbers, De= 0.94 (dataset 32) and De= 1.35 (dataset 33). See the caption of
figure 5 for the legend noting that now open circles overlaid on the symbols depict spectra
from dataset 33. See table 2 for further details on the datasets.

Cζ ≡
(

3
2

)5/2
ζ`/K3/2). Remarkably, the sum of the two kinetic energy cascade fluxes

turns out to amount roughly to the same fraction of K3/2/` as in the Newtonian
reference case, i.e. CΠ+ζ ≡

(
3
2

)5/2
(ζ +Π |max)`/K3/2 ≈ 0.5 for the range of De and β

spanned by our simulations (see figure 7a). It is apparent, nevertheless, that there is
a mild increase in the sum of CΠ and Cζ , denoted as CΠ+ζ , for the larger Deborah
numbers. Note that the normalised solvent dissipation and power input scale in a
very different way (cf. figure 2b) and thus there is no reason a priori to expect
the constancy of CΠ+ζ which, to the best of the authors’ knowledge, is presented
here for the first time. This observation is further strengthened by the fact that the
larger Reynolds number simulations (up Reλ 6 183) as well as the simulation with
the ‘acceleration’ forcing behave in a consistent way (see figure 7b).

5. Discussion
In the previous section (§ 4) we presented data showing that, for large Deborah

numbers, the polymers induce a kinetic energy cascade by removing more kinetic
energy from the low-wavenumber range than they can dissipate and returning
the excess energy into high wavenumbers. This energy transfer may bear some
resemblance to the mechanism in drag-reduced wall bounded turbulence whereby
polymers extract turbulent kinetic energy from the flow closer to the wall, store it
as elastic energy (σ [p]ij Sij > 0) and transfer part of this energy back further away
from the wall (Min et al. 2003; Dubief et al. 2004; Dallas et al. 2010; Dubief et al.
2013). However, in the present spatially homogeneous flows σ [p]ij Sij is, on average, the
same everywhere and must be positive due to the dissipative nature of the polymers.
Therefore, only local fluctuations can lead to an elastic to kinetic energy transfer,
i.e. σ [p]ij Sij < 0.

It may seem counter-intuitive that the polymers remove most of the kinetic energy
from the large instead of the small scales which are typically associated with larger
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FIGURE 7. (Colour online) Normalised maximum nonlinear energy cascade flux, CΠ ,
polymer-induced kinetic energy cascade flux, Cζ and total kinetic energy cascade flux,
CΠ+ζ versus the Deborah number for all DNS data. In (a) only the runs with
delta-correlated forcing, N = 1923 and L2 = 1002 are presented (datasets 1–28, excluding
dataset 9 in table 2). The same data are presented in (b) in light grey together with
the remaining DNS data which are ran with β = 0.8 and we use to test (i) the effect
of increasing the Reynolds number (labelled ‘N = 3843’: datasets 29–31 in table 2),
(ii) the effect changing the large-scale forcing (labelled ‘Acc. Force’: datasets 32 and 33 in
table 2) and (iii) the effect of increasing the maximum extensibility (labelled ‘L2= 10002’:
dataset 9 in table 2).
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strain rates. However, as commented by Terrapon et al. (2004): ‘even a strong flow
will not unravel a polymer molecule if it does not last long enough’. Therefore,
it appears that the weak but persistent strain rate from the large scales becomes
increasingly effective in unravelling the polymer molecules for large De, whereas the
stronger but short lived small-scale gradients become decreasingly effective. In fact,
our data indicate a loss of correlation/alignment between the polymer stress tensor
and the strain rate tensor for large Deborah numbers. This can be seen, for example,
in figure 2 where we show the polymer dissipation decreasing for De > 1 in the
runs with β = [0.8, 0.9] (recall that on average ε[p] = σ [p]ij Sij in statistically steady
polymer-laden turbulence), even though the trace of the polymer stress tensor (∝ Cii)
as well as SijSij (∝ ε[N]) monotonically increase for De> 1 (see table 2 and figure 2).
This appears to be a common feature of polymer-laden flows at moderate to large
Deborah (or Weissenberg) numbers since similar findings were reported by Brasseur
et al. (2005) in homogeneous shear turbulence (see their figure 6) and by Watanabe
& Gotoh (2013) for homogeneous decaying turbulence (see their figures 11 and 22).

We confirmed the loss of alignment between Sij and σ [p]ij by computing the cosine
between the three principal axes of the strain-rate tensor e(1)j , e(2)j and e(3)j and the
principal axes of the polymer stress tensor g(1)j , g(2)j and g(3)j in the spirit of the
extensive work done for vorticity and scalar gradient alignments in turbulence (see
e.g. Ashurst et al. 1987; Jimenez 1992; Tsinober, Kit & Dracos 1992). Since we seek
the alignment between two tensors, there are 9 inner products between their principal
axes appearing in the Frobenius product σ [p]ij Sij, i.e.

σ
[p]
ij Sij = λ(i)ξ ( j) cos2

(
e(i)k , g( j)

k

)
, (5.1)

where λ(i) and ξ (i) are the eigenvalues corresponding to the eigenvectors e(i)j and
g(i)j , respectively. Note that, in contrast to the eigenvalues of the strain-rate tensor
which add to zero and therefore it is customary to sort them such that the first
(third) is always positive (negative) whereas the intermediate can either be positive or
negative for different flow regions, the eigenvalues of the polymer stress tensor are
always non-negative since the tensor is positive semidefinite (Jin & Collins 2007).
For convenience we also sort the eigenvalues of the polymer stress tensor such that
ξj
(1) > ξj

(2) > ξj
(3). In figure 8 we present the alignment between g(1)j as well as

g(2)j with the three principal axes of the strain-rate tensor for three simulations with
De = [0.19, 0.56, 2.14] (datasets 2, 4 and 11 in table 2). (We do not present the
graphs showing the alignment of g(3)j since its corresponding eigenvalue is much
smaller than the other two and therefore does not significantly contribute to σ

[p]
ij Sij.)

We choose these three datasets to represent different types of polymer-turbulence
interactions, namely (i) De = 0.19, a passive polymer-laden turbulent flow, where
σ
[p]
ij Sij ∼ SijSij, see § 4; (ii) De= 0.56, a turbulent flow where the polymers dissipate

70 % of the power input but do not induce a kinetic energy cascade (i.e. ζ ≈ 0); and
(iii) De = 2.14, a turbulent flow where the polymers dissipate 75 % of the power
input and induce a strong kinetic energy cascade flux ζ which is greater than twice
the nonlinear kinetic energy cascade Π |max (see figure 7a). There are two main
outstanding features that can be observed. First, the intermediate eigenvector of the
polymer stress tensor, g(2)j , is always preferentially aligned with the intermediate
eigenvector of the strain-rate tensor, e(2)j , for all three datasets, showing a consistent
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FIGURE 8. (Colour online) Probability of alignment between the principal axes (a,c,e)
g(1)j and (b,d,f ) g(2)j (corresponding to the largest and intermediate eigenvalue) of the
polymer stress tensor with the principal axes of the strain-rate tensor for three simulations
with (a,b) De = 0.19, (c,d) De = 0.56 and (e,f ) De = 2.14 (datasets 2, 4 and 11 in
table 2, respectively). The probability distributions are individually normalised such that
they integrate to unity.

behaviour. In stark contrast, the eigenvector corresponding to the largest eigenvalue,
g(1)j , has different preferential alignments for the three datasets. For the lowest De,
g(1)j is preferentially aligned with e(1)j as expected, but for the intermediate De it
preferentially aligns with either e(1)j or e(2)j . Outstandingly, however, for the largest
De, the statistics are dramatically different showing the same preferential alignment
with e(2)j but also alternative preferred configurations with angles of 45◦ and 55◦

(≈ cos−1(0.7) and ≈ cos−1(0.65), respectively) with e(1)j and e(3)j , respectively. The
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latter alignment, which can lead to σ [p]ij Sij < 0 (since λ(3) < 0) may be the underlying
cause of the polymer-induced kinetic energy cascade. We also repeated the above
analysis for our dataset 33 obtained with the ‘acceleration’ forcing (De= 1.35), which
also exhibit a polymer-induced kinetic energy cascade, and observed a qualitatively
similar behaviour to that shown in figure 8(e, f ).

This loss of alignment is consistent with the hypothesis that small-scale gradients
are not as efficient in stretching the polymer molecules. A tentative explanation for
this behaviour is that, whenever the polymer relaxation time is much larger than
the Kolmogorov time scale, the polymers are swept through the small regions of
intense velocity gradients with an orientation of the principal axes weakly related to
the local orientation of the principal axes of the strain-rate tensor. This should not
be very surprising since we expect that the orientation of the principal axes of the
polymer tensor and the dumbbell separation to result from the stretching endured
throughout the Lagrangian history (of horizon proportional to τ ) as the polymers
meander through the turbulent flow. Naturally as τ becomes increasingly larger than
the turnover time (i.e. increasingly large De) the strain-rate field induced by the
smaller turbulent eddies becomes, by contrast, too fast to cause as much stretching
and rotation as the large scales do. This loss of local alignment leads to a situation
where the intense velocity gradients can either cause a transfer from kinetic to elastic
energy or the other way around. Noteworthily, a recent study on viscoelastic Couette
flow has found that the solvent and polymer dynamics decouple for (disturbance)
wavenumbers, k, such that k2τ/(`2/ν[s]) � 1 or conversely k2τ/(`2/ν[s]) � 1 (Page
& Zaki 2014). This may be related to our observation of a decreasing (increasing)
ability of the polymers to extract energy from the small (large) scales as the polymer
relaxation time increases. However, the loss of local alignment may not be sufficient
to explain the net transfer of elastic to kinetic energy at the small scales.

To further understand the mechanism underlying the polymer-induced kinetic energy
cascade one would need Lagrangian statistics for the ‘residence’ time of the polymers
on coherent flow structures to be taken into account (Terrapon et al. 2004; Watanabe
& Gotoh 2013). For example, Terrapon et al. (2004) showed that the polymers extract
kinetic energy mostly in biaxial extensional flow regions. It would be interesting to
confirm this observation for the present homogeneous flows at different Deborah
numbers and to investigate which flow topologies lead to the inverse process, i.e. the
polymer injection of kinetic energy. This is, however, beyond the scope of the present
work and is left for a future communication.

To better understand the underlying mechanisms causing this behaviour, one may
also be tempted to analyse the kinetic to elastic energy transfer spectrum from the
‘perspective’ of the polymers, i.e. from studying the wavenumber breakdown of the
elastic energy gained (loss) from (to) kinetic energy, here denoted as T [p]p (k), which
appears in the power balance equation for the polymer free energy (see Casciola &
de Angelis 2007),

G(k)+ T [p]p (k)= Ep(k)/τ . (5.2)

This elastic energy transfer balance is the counterpart of (4.1) for the polymer
molecules, where Ep, G, T [p]p and Ep(k)/τ are the spectra of polymer free-energy,
elastic energy redistribution (or elastic energy cascade), elastic-to-kinetic energy
transfer and the free-energy dissipation spectrum (in general, there is an additional
term in (5.2) representing the rate of change of Ep in time, which is not included
since we restrict the analysis to statistically stationary turbulence). (Note that this
decomposition requires a linearisation of the elastic response of the polymers, i.e. the
elastic springs of the dumbbells are linearised and the gyration radius is neglected:
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both are reasonable approximations as long as the average elongation of the polymers
is mild, see Fouxon & Lebedev 2003 and Casciola & de Angelis 2007.)

However, as discussed by Casciola & de Angelis (2007) the kinetic-to-elastic
energy transfer spectrum appearing in the kinetic energy budget, T [p], does not
have a wavenumber-to-wavenumber correspondence to its counterpart in the polymer
free-energy budget, T [p]p , even though both integrate to the net energy exchange, i.e.∫∞

0 T [p](k)dk = ∫∞0 T [p]p (k)dk = σ [p]ij Sij (see also de Angelis, Casciola & Piva 2012).
We compared T [p]p (k) against T [p](k) using our dataset 9 (see table 2; this is the
dataset where L2= 10002 and thus the linearisation is reasonable) and confirmed that,
although the spectra do integrate to the same value, they are very different in shape.
In fact, whereas T [p] changes sign at wavenumber kη= 0.2 (from positive to negative,
as can be inferred from figure 5b), its counterpart T [p]p is strictly positive for all
wavenumbers (not shown here). This non-local character of the turbulence–polymer
interactions hinders any attempt to understand the change in sign of T [p] at high
wavenumbers from studying the polymer free-energy budget (5.2).

6. Conclusions
A comprehensive set of DNSs of statistically steady and homogeneous turbulence

in viscoelastic fluids is presented for a range of rheological parameters and Reynolds
numbers (47 6 Reλ 6 183 and 0.10 6 De 6 2.14). We show that the nonlinear kinetic
energy transfer from low to high wavenumbers, Π |max retains the scaling K3/2/` when
polymer additives are present as long as the polymers only extract energy from the
turbulence at all wavenumbers. This is shown to occur at low De, even in situations
where the polymers dissipate most of the power input and the amount of power
directly removed by the polymers from low wavenumbers is larger than the power
transferred by the nonlinear energy cascade to large wavenumbers.

For polymer relaxation times of the order of the eddy turnover time, i.e. De ' 0.7,
the polymers remove more energy from the low wavenumbers than they are able to
dissipate and transfer that energy back to the solvent at high wavenumbers which
is, effectively, a polymer-induced kinetic energy cascade. In these cases there is
a decrease in the normalised nonlinear energy transfer CΠ which turns out to be
inversely proportional to the normalised polymer energy cascade Cζ . Remarkably,
the normalised total energy transfer, CΠ+ζ retains approximately the same numerical
value as the statistically stationary Newtonian reference case, where CΠ ≈ Cε[s] ≈ 0.5
with only a mild dependence on the Reynolds number of the simulations and similar
for both forcing methodologies tested.

We conclude by noting that the fact that the polymers extract most of the energy
from the large scales is particularly convenient for LES of viscoelastic flows. In stark
contrast, the strong depletion of the nonlinear energy cascade hinders the direct use of
the current LES models of Newtonian flows in LES of viscoelastic flows. Nevertheless,
the fact that the sum of the nonlinear and polymer-induced kinetic energy cascade
retains the same scaling as the nonlinear cascade in Newtonian turbulence suggests
that it may be beneficial to bundle these two contributions to the subgrid-scale stresses.
Furthermore, it may be possible to adapt current Newtonian LES models to treat this
total energy cascade flux as a whole.
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